Ķvlog

Opinion
Science Opinion

Science Teachers, Be Honest About What Science Still Can’t Explain

“If you figure that one out, I want a picture with your Nobel Prize.”
By Alexander Bell — March 27, 2019 4 min read
Illustration of father and child working on computer.
  • Save to favorites
  • Print
Email Copy URL

If asked, most people will claim they know how a toilet works. But when asked to explain, most simply can’t. Yale psychologists Leonid Rozenblit and Frank Keil called this the “illusion of explanatory depth.” A similar failure of intuition leads people to overestimate how fully science can explain our universe. To inspire the next generation of scientists, science teachers must reverse this misconception by making it clear to students that despite all we’ve learned, our universe remains ever mysterious.

Throughout my years as a student I subconsciously formed a conclusion about scientific discovery that can be stated in just three words: It already happened. I believed that the big questions—What is matter? What are living things made from? Why do things fall downwards?—had already been answered and that most of 21st century science is concerned with negotiating the marginal, idiosyncratic details.

These feelings didn’t deter me from science altogether because my interest was largely rooted in a desire to solve practical problems, not to explore the unknown. If nitpicking over tiny details—the leftovers of real discovery—would lead to cures for diseases, then sign me up. But many students are driven to science by curiosity, not pragmatism. These are the students whom science risks losing to other careers.

Throughout my years as a student I subconsciously formed a conclusion about science that can be stated in just three words: It already happened."

It wasn’t until I started studying molecular biology during my fourth year of college that I understood how much has not yet been discovered. As my classes became more advanced, my professors increasingly answered students’ in-class questions with “That is a total a mystery” or “If you figure that one out, I want a picture with your Nobel Prize.”

It is not self-evident that there are important aspects of the universe that humankind doesn’t yet understand. For children to realize this, someone must tell them. Almost all unanswered questions, to an expert, are questions that have not yet been asked to a lay person. The average 5th grader has no way of independently discovering that immunologists do not fully understand how memory T-cells are generated, because most 5th graders do not know what memory T-cells are.

A child might ask his parent or teacher, “Why do we need sleep?” He would be asking a question that truly does not have a good answer yet. But, if the child is given even a partial answer—one that even the child may find unsatisfying—the effect would be completely different than if he were told, “Nobody really knows yet, but people are very interested in learning!” The mere knowledge that someone on Earth thinks they have the right answer can be enough to deflate the child’s curiosity.

In the age of the internet, the mysteriousness of the universe is less obvious than ever. Google essentially puts the entirety of human knowledge at one’s fingertips. Internet search engines perpetuate the illusion that we already know everything by supplying the user with “answers” to nearly every question, even if those answers are mere guesses at best. Try Googling “What is the meaning of life?” You will have to wade through many genuine attempts to answer this question before finding a single, “Who knows?” In a pool of answers to an unanswerable question, the most honest answer, “nobody knows,” appears to be just another guess. It is precisely because of the apparent expanse of human knowledge that children desperately need to be taught about its limits.

Educators, policymakers, and textbook writers can all play a part, by embracing the importance of actively teaching what we don’t know. At the same time, we must teach students how we are so sure of these gaps in our knowledge. What observations tell us there’s more to the story? We must also communicate the reality of unknown-unknowns to students—that the answers to many of the questions we have will likely be found through learning about things that we currently don’t even know exist.

Students should know that the material they are learning today can all be subjected to radical reinterpretation—just as the geocentric model that placed Earth at the center of the cosmos was centuries ago. For instance, we teach students about sleep, dark matter, and the chemical origins of life, all of which are still largely unsolved mysteries. Teaching students about paradigm shifts of the past—as in what happened to geocentrism—is not the same as teaching them there might be paradigm shifts yet to come. For students, learning that there were mysteries does not necessarily translate to understanding that there are still mysteries for them to unravel.

Ultimately, to make the universe feel exciting, an emphasis on the unknown must be integrated into science curricula. We need to test our students on their understanding of the gaps in our collective scientific knowledge and write our textbooks with this intent in mind. Teachers must resist giving partial answers to questions from students in situations when an affirmative “nobody knows (yet)” would be more appropriate—and inspirational. Students don’t need to memorize every specific incarnation of scientific ignorance, but they should understand that the universe remains ever mysterious, and they were not born too late to explore it.

Related Tags:

Events

College & Workforce Readiness Webinar How High Schools Can Prepare Students for College and Career
Explore how schools are reimagining high school with hands-on learning that prepares students for both college and career success.
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
School Climate & Safety Webinar
GoGuardian and Google: Proactive AI Safety in Schools
Learn how to safely adopt innovative AI tools while maintaining support for student well-being. 
Content provided by 
Reading & Literacy K-12 Essentials Forum Supporting Struggling Readers in Middle and High School
Join this free virtual event to learn more about policy, data, research, and experiences around supporting older students who struggle to read.

EdWeek Top School Jobs

Teacher Jobs
Search over ten thousand teaching jobs nationwide — elementary, middle, high school and more.
Principal Jobs
Find hundreds of jobs for principals, assistant principals, and other school leadership roles.
Administrator Jobs
Over a thousand district-level jobs: superintendents, directors, more.
Support Staff Jobs
Search thousands of jobs, from paraprofessionals to counselors and more.

Read Next

Science From Our Research Center Nearly Half of Teens Can’t Identify What Causes Climate Change. Why That Matters
Climate change is affecting many industries and students need a basic understanding of the concept to succeed in those fields, experts say.
7 min read
Scientists say that climate change makes storms like hurricanes more destructive. This 2022 aerial view of Fort Myers Beach, Fla. shows the aftermath of Hurricane Ian which made landfall as a Category 4 hurricane.
In this aerial view, heavily damaged mobile homes are seen in Fort Myers Beach, Fla., a month after Hurricane Ian made landfall as a Category 4 hurricane in 2022, causing an estimated $67 billion in insured losses. Experts say climate change is leading to more hurricanes and floods.
Paul Hennessy/Sipa via AP
Science Making Time for Science in Kindergarten Could Have a Big Payoff
When teachers in grades P-1 received high-quality curriculum and PD in science, students' scores rose, a new meta-analysis finds.
4 min read
First graders take a closer look at bees during a class lesson.
First graders take a closer look at bees during a class lesson. Science is often neglected in the early grades, but new research suggests that young students who are exposed early to science instruction do better on science exams—potentially setting them up for later success in the discipline.
Allison Shelley for All4Ed
Science Download How Teachers Are Motivating Students To Learn STEM (DOWNLOADABLE)
Teachers asked students what motivates them to work harder in STEM. Here's what they found.
1 min read
Diverse school children students build robotic cars using computers and coding.
iStock / Getty
Science From Our Research Center Students Say They Care More About STEM as They Get Older. Teachers Disagree
An EdWeek Research Center survey examined student motivation in STEM classes.
3 min read
Cropped from original illustration, silhouetted figures water a blooming STEM flower.
Danny Allison for Education Week